2000

2001

2002

2003

Northeastern US and Southeastern Canada

Average Annual Spring Snow Cover of the

By: Matthew Peetz, Jakub Sitek and Amanda Fronduto **GPH 444: Professor Young**

Average Temperature vs Average Snow Cover

Our findings show that the average snow cover for the

Northeast US and Southeast Canada, though sporadic, is

trending downwards during the months of March, April

and May. It is also apparent that these trends correlate

with change in temperature during that time. Years with

snow cover, while average or below average temperatures

yielded more snow cover. We welcome more research on

above average temperatures yielded lower amounts of

Introduction

Through this research, we aim to map changes in snow cover over time to see whether they correlate to the gradual increase in global temperatures. Our hypothesis is that as global temperature increases, the average snow cover will decrease as a result. The thirteen maps showing the region analyzed will show whether a pattern is emerging.

Scale Bar for Snow cover: 0 = no snow (green) 100 = all snow (white)

→ Temperature

---Snow Cover

2011

2010

2009

2008

Abstract

Average Snow Cover Percent with Trend Line

Our results show that average snow cover for the months

of March, April, and May for our specified region is

becoming increasingly sporadic over time. However, it

seems to be generally trending in a downward direction.

This correlates with the temperature data acquired from

NOAA, as the years with more snowfall correlate well

with year of lower temperature, while years with less

snowfall correlate with higher temperatures.

Results and Discussion

Data and Methodology

Using Idrisi, we have compiled 13 maps of average snow cover between the months of March through May, for the aforementioned areas. In addition, we used temperature data for the same timespan, acquired from the NOAA website and correlated it with our own data by making graphs in Excel.

Sources:

NASA Reverb Website for MODIS 8-day data:

http://reverb.echo.nasa.gov/reverb/#utf8=%E2%9C%93&spatial_map=satellite&spatial_type=rectangle NOAA Climotological Rankings for temperature data:

http://www.ncdc.noaa.gov/temp-and-precip/ranks.php?periods%5B% 5D=3¶meter=tmp&state=101&div=0&year=2012&month=5#ranks-form

2004

2005

2006

this topic to confirm our findings.

2007

Conclusion